What is VoIP, and what are its Main Benefits?

The term VoIP is widely used in any communication and technical discussions these days. Some identify it as fancy and expensive telephones, and some understand it as very cheap international calls over the internet.

So I’ll try to very simply give a quick explanation on what VoIP is, and what the benefits are.

VoIP stands for “Voice over Internet Protocol” – so in the most general definition, it is the term used for the technology used to transfer voice over IP (i.e. computer network including the internet).

Practical VoIP Services

In practice, VoIP covers a broad range of different telephony technologies / services. The main ones are:

  • Free phone calls over the internet: these include the services where you use your computer / internet enabled mobile phone to do a voice call with someone else over the internet using the same services. Probably the most popular example is Skype. Such communications are free as you would only pay for the internet services in general. Apart from Skype, there are now many other similar services available that you can select.
  • Professional VoIP telephone sets and PBXs: old analog office telephones and intercoms are now almost totally replaced with VoIP-based equivalents. Some of the most famous names are Cisco and Avaya which are on the higher-end. However there are also many lower cost solutions and free VoIP PBX software such as Asterisk that can be used to set up very advanced business solutions for offices.
  • VoIP for International Calls: Another service that is used as a standalone service or in conjunction with above solutions is using VoIP for making international calls. Unlike traditional POTS (Plain Old Telephone System) services that are very expensive for making international calls, using these services can save up to 90% on costs for international calls. The reason is that while in POTS a dedicate connection is made from your location right up to destination, in VoIP, your connection up to the distant location is provided over the internet at no extra costs up to the destination city, and you would only pay for the call as if it has been a local call.

6 Main Benefits of VoIP

The 6 main benefits  are:

  1. Major costs saving in both implementation and in call rates.
  2. Easy integration with other business systems and communication systems.
  3. Lots of highly useful features such as CallerID, follow-me, find me, auto-attendant, call lists, multiple numbers, voice mails, etc.
  4. High portability and can seamlessly interconnect remote sites.
  5. Higher voice quality, immune from interferences.
  6. Lower maintenance costs

Conclusion

VoIP is very rapidly replacing old analog solutions. We can now confidently say that it is for sure the sole future of telephony solutions.

Which Telephony Solution Costs Less to Implement – VoIP or analog POTS?

Telephones have always been and will continue to be a part of any office, hotel, or any industrial infrastructure. Today, there are still many design requirements where you see requests for analog phone systems, arguing cost saving reasons.

So the question would be: What is the most cost effective solution for telephony systems – Voice over IP (VoIP), or analog Plain Old Telephone Service (POTS)?

If you’re thinking “Of course VoIP”, I’m afraid that’s not a fully accurate answer – there are also exceptions!

Below I briefly explained which of the two costs lower to implement:

What are the situations where VoIP systems cost less to implement?

There are many situations where VoIP systems are simply the better option for telephony when it comes to saving costs.


1) Scattered and Large Infrastructures

The cabling costs for an analog or VoIP telephony solution on very small offices might not differ much, but the difference would be immense if we’re talking about large building infrastructures with hundreds of phone sets. In a VoIP setup, the same LAN network can be used for VoIP telephones with no need for expansion with a separate cabling infrastructure. However, in an analog telephone solution, you would need to lay copper cables from the PABX to each single point that requires a telephone connection, raising the need for expensive multi-pair copper cables for the telephony backbone.

2) Where Scalability is Demanded

In analog systems, a pair of twisted copper wires should connect each phone to the PABX. It means scalability would need to be designed from the beginning by using multi-pair cables with enough spare pairs to allow for future expansion. Without adequate spares for expansion, the laying of new cables would be simply unavoidable. In VoIP systems, there would be no need for new cabling to accommodate expansions in the network backbone.

3) When a High Number of Phones are Needed

Analog PABXs need to include individual circuits for every extension, and as the number of extensions increase, they simply are much more expensive than VoIP PABXs. VoIP PABXs can be as small as a 1U rack server with no need for separate electronics.

VoIP systems of course come with many extra benefits in addition to costs savings – such as a long list of features not available on analog systems, full integration with computer and data networks, much easier maintenance, software upgradability, and much more.

Therefore except for very small offices with less than a handful of phones, I can’t think of any other scenario for proposing a full-analog POTS PABX anymore. But this is not the end of story!

What are the situations where analog systems cost less to implement?

Don’t be surprised! There are still many situations where an analog system can be a more appropriate solution for at least part of the telephony system of an infrastructure.


1) Distant Locations with no Means of Electricity

VoIP phones need to be powered on to work! This is usually done by getting the power from a POE (Power Over Ethernet) network switch over the same network cable that connects the phone to the switch. However, this limits the distance to no more than 100 meters or 300 feet. But in analog POTS phones, the power to the phone is provided over the twisted pair cable which can be extended for up 2 miles (3 km) or more. It is not a rare scenario in industrial infrastructures where the telephony system would need to be extended to some remote locations.

2) Hotlines and Emergency Phones

Analog phones are still commonly used in industries as hotlines / emergency phones – they are independent from any network infrastructure and hence would still work in cases of emergencies like power cuts and shutdown of electricity to the infrastructure network.

Both VoIP and analog each have their own strengths in specific situations, which allow you to save on costs when implementing the correct telephony system. Today, there are technologies that allow both VoIP and analog systems to interface with each other. FXS cards or ATA adapters are usually used to interface an analog phone system to the now very common VoIP PBXs.

5 Reasons Why Integrated ELV Systems Reduce Costs

In this article I want to quickly go over 5 reasons on why designing integrated ELV systems considerably reduces construction costs.

Unfortunately, many ELV designers still base their designs on traditional systems running on proprietary networks for various building management systems, as well as separate telephony, data and television networks each with their separate/multiple cabling systems.

This results to increased costs, limited functionality, and complex management.

The solution is a modern design based on integration of all ELV systems over an IP-based network.  This calls for a higher level of technical expertise and experience, and a good combination of networking and ELV knowledge. As you will see below, the results are higher efficiency at lower OPEX and CAPEX costs, and reduction in risks of delay:

1- Unified Cabling and Pathways

Unlike traditional solutions where each system would need to use its own cabling system and pathway (CAT6 for network, copper multi-core twisted pair for telephony, coaxial cable for TV systems, twisted cable for PAGA, control cable for ACS, …), in a modern IP-based ELV design, all systems mainly use the same common data network, hence considerably decreasing the costs on cabling and pathways.

Of course the installation of common cabling and pathways requires planning of the containment systems at the early stages of the project so that the optimum routes can be designed by experienced network designers.

2- Less Quality / Interference Problems

One of the key challenges of traditional analog designs especially for systems such as CCTV, telephony, and television is the complication during the design and installation to ensure that proper quality of audio and picture is obtained. Although things might look good on paper, in the course of installation and commissioning many unforeseen problems usually pop up, which cause further unexpected delays on project timelines and increase on forecasted costs.  Problems can arise such as grounding problems, quality issues of cables and connectors, and electrical and ground-loop noise which directly affect analog solutions. In IP based solutions, by implementing a digital/IP based backbone these issues are no longer a concern.

3- Lower Costs for Expandability

Most of traditional ELV systems are very limited on the available means of expandability over large compounds. For example, to expand a conventional analog telephony, CCTV, or public alert system over a medium-sized compound, kilometers or miles of cables need to be physically laid. This calls for expensive, multi-core copper cables that are both expensive and hard to lay. While on new IP based solutions, the network cloud consisting of all types of connection mediums such as much less expensive fiber cables or even microwave links can be used to seamlessly interconnect remote areas at a fraction of the costs of traditional solutions.

4- Easier Management and Troubleshooting

IP-based unified ELV solutions are by far easier to manage and troubleshoot, because the maintenance staff do not need to bother about multiple cabling systems and connections, and the cabling (called physical layer in data networks) is easily managed and checked. The overall needed experience and troubleshooting time required for maintaining the systems are also considerably lower and usually a single computer would be sufficient for managing and troubleshooting the all systems from a centralized location.

5- Capability for Remote Management

Unlike traditional analog solutions, IP-based systems can be remotely managed and reconfigured, with minimum physical changes required. This saves considerably on maintenance costs while bringing many new features and possibilities.

Other Benefits of Unified ELV Systems

Costs savings is not the only benefit of modern IP-based integrated ELV systems – there are more benefits such as:

  • Much more functionalities and features
  • Expandability with no need to redo the infrastructure
  • Software upgradability
  • Integration of different systems

In a future article I will explain the challenges of designing modern integrated ELV systems.